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Abstract. This paper proposes Convolve, Attend and Spell, an attention-
based sequence-to-sequence model for handwritten word recognition. The
proposed architecture has three main parts: an encoder, consisting of a
CNN and a bi-directional GRU, an attention mechanism devoted to focus
on the pertinent features and a decoder formed by a one-directional GRU,
able to spell the corresponding word, character by character. Compared
with the recent state-of-the-art, our model achieves competitive results
on the IAM dataset without needing any pre-processing step, predefined
lexicon nor language model. Code and additional results are available in
https://github.com/omni-us/research-seq2seq-HTR.

1 Introduction

Handwriting Text Recognition (HTR) has interested the Pattern Recognition
community for many years. Transforming images of handwritten text into ma-
chine readable format has an important amount of application scenarios, such
as historical documents, mail-room processing, administrative documents, etc.
But the inherent high variability of handwritten text, the myriad of different
writing styles and the amount of different languages and scripts, make HTR an
open research problem that is still challenging. With the rise of neural networks
and deep learning architectures, HTR has reached, as many other applications,
an important performance boost. The recognition of handwritten text was, in
fact, one of the first application scenarios of convolutional neural networks, when
LeCun et al. proposed in the late nineties such architectures [16] for recogniz-
ing handwritten digits from the MNIST dataset. In the literature, several other
methods have been proposed for tackling the HTR task such as Hidden Markov
Models (HMM) [4, 6, 11], Recurrent Neural Networks (RNN) and Connection-
ist Temporal Classification (CTC) [23, 27, 15, 20, 18], or nearest neighbor search
methods in embedding spaces [21, 14, 1].

Inspired in the latest advances in machine translation [25, 2], image caption-
ing [28] or speech recognition [8, 3], we believe that sequence-to-sequence models
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backed with attention mechanisms [5, 24] have a significant potential to become
the new state-of-the-art for HTR tasks. Recurrent architectures suit the temporal
nature of text, written usually from left to right, and attention mechanisms have
proven to be quite performant when paired with such recurrent architectures to
focus on the right features at each time step. Sequence-to-sequence (seq2seq)
models follow an encoder-decoder paradigm. In our case, the encoder part con-
sists of a Convolutional Neural Network (CNN) that extracts low-level features
from the written glyphs, that are then sequentially encoded by an Recurrent
Neural Network (RNN). The decoder is another RNN that will decode one char-
acter at each time step, thus spelling the whole word. An attention mechanism is
introduced as a bridge between the encoder and the decoder, in order to provide
a high-correlated context vector that focuses on each character’s features at each
decoding time step.

The contributions of this work are twofold. On the one hand, we present
a novel attention-based seq2seq model, whose performance is comparable to
that of other state-of-the-art approaches. Our architecture does not need any
pre-processing step of the handwritten text such as de-slanting, baseline nor-
malization, etc. The proposed approach is able to recognize the handwritten
texts without the need of any predefined lexicon nor a language model. On the
other hand, we also provide a deep investigation for content- and location- based
attention formulations, and other strategies such as attention smoothing, multi-
nomial sampling and label smoothing. In this paper we focus on the specific task
of isolated word recognition, and we present our results in the widely known
offline IAM dataset, comparing our performance with a collection of different
approaches from the literature.

The rest of the paper is organized as follows. Section 2 reviews the rele-
vant works for handwritten text recognition. Afterwards, Section 3 introduces
the proposed architecture. Section 4 presents our experimental results and per-
forms a comparison of the proposed method against the state-of-the-art. Finally,
Section 5 draws the conclusions and future work.

2 Related Work

Handwritten text recognition approaches can be grouped into four different cate-
gories: HMM-based approaches, RNN-based approaches, nearest neighbor-based
approaches and attention-based approaches. We will discuss methods from each
of these big groups below.

HMM-based approaches were the first ones to reach a reasonable performance
level [9]. Bianne et al. [4] built a handwriting recognizer based on HMM, decision
tree and a set of expert-based questions. Bluche et al. [6] proposed a method
of the combination of hidden Markov models (HMM) and convolutional neural
networks (CNN) for handwritten word recognition. Gimenez et al. [11] provided
a method using windowed Bernoulli mixture HMMs. However, with the rise of
deep learning, such HMM proposals have been outperformed.
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The second group of methods corresponds to RNN-based approaches. Graves et
al. [12] first proposed to use Long Short-Term Memory (LSTM) cells together
with the Connectionist Temporal Classification (CTC) loss to train a multi-time
step output recurrent neural network. Later on, in [13] he first provided the Bidi-
rectional Long Short-Term Memory (BLSTM) and CTC model for HTR which
outperformed the state-of-the-art HMM-based models. For many years, the use
of LSTM with CTC was the state of the art in handwriting recognition and many
different variants were proposed. Krishnan et al. [15] perform word spotting and
recognition by employing a Spatial Transformer Network (STN), BLSTM and
CTC networks. Stuner et al. [23] provide a BLSTM cascade model using a lexi-
con verification operator and a CTC loss. Wigington et al. [27] perform word and
line-level recognition by applying their normalization and augmentation to both
training and test images using a CNN-LSTM-CTC network. However, CTC im-
plies that the output cannot have more time steps than the input, this is usually
not a problem for HTR tasks, but it is a barrier to further development towards
generality and robustness. In addition, CTC only allows monotonic alignments,
it may be a valid assumption for word-level or line-level HTR tasks, but it lacks
the possibility for further research on paragraph or even more complex article
styles.

As an alternative to RNN architectures, some authors proposed to learn em-
beddings that will map handwritten words to an n-dimensional space in which
a nearest neighbor strategy can be applied to find the most likely transcription
of a word. Almazan et al. [1] created a fixed length and low dimensional at-
tribute representation known as PHOC. Krishnan et al. [14] proposed to learn
such embeddings using a deep convolutional representation. Poznanski et al. [21]
provided a CNN-N-Gram based method as word embedding. All the above meth-
ods have proven to correctly address the problem of multiple writers, but, as far
as we know, they need a predefined lexicon, so they can not recognize out of
vocabulary words, which is an important drawback.

Finally, attention-based approaches have been widely used for machine trans-
lation, speech recognition and image captioning. Recently, the interest in these
approaches for HTR has arisen. Bluche et al. [5] propose an attention-based
model for end-to-end handwriting recognition, but the features from the encod-
ing step still needed to be pre-trained using CTC loss in order to be meaningful.
This work might be the first successful trial using an attention-based model.
Sueiras et al. [24] recently proposed a seq2seq model with attention for hand-
written recognition, but they impose a sliding-window approach whose window
size needs to be manually tuned which limits the representative power of the
CNN features by arbitrarily limiting its field of view. In addition, in the paper
they introduced some changes to the widely used Bahdanau [2] content-based
attention that are not properly justified. Our seq2seq model outperforms all of
those previous proposals.
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3 Seq2seq Model with Attention Mechanism

Our attention-based seq2seq model consists of three main parts: an encoder,
an attention mechanism and a decoder. Figure 1 shows the whole architecture
proposed in this work. Let us detail each of the different parts.
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Fig. 1: Architecture of the seq2seq model with attention mechanism.

3.1 Encoder

We start with a CNN to extract visual features. Since we believe that hand-
written text images are not visually as complex as real world images, we choose
a reasonable CNN architecture such as the VGG-19-BN [22] and initialize it
with the pre-trained weights from ImageNet. Then we introduce a multi-layered
Bi-directional Gated Recurrent Unit (BGRU) which will involve mutual infor-
mation and extra positional information for each column, and will encode the
sequential nature of handwritten text. For VGG-19-BN network, we removed
the last Max pooling layer to be able to tackle short feature sequences. So we
use VGG+BGRU as an encoder to transfer the image I into an intermediate-
level feature X , which then is reshaped into a two-dimensional feature map X ′.
The feature map X ′ can be referred as a sequence of column feature vectors
(x′0, x

′
1, . . . , x

′
N-1), where N is the width of the feature map. H is the output of
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encoder which shares the same width of X ′. Each element hi ∈ H is the output
of BGRU at each time step, which will be further used to calculate attention.

3.2 Attention Mechanism

In this section we will discuss two main attention mechanisms, content-based
attention and location-based attention.

Content-based Attention The basic attention mechanism is content-based
attention [2]. The intuition is to find the similarity between the current hidden
state of the decoder and the word image representation feature map, thus we
can find the most correlated feature vectors in the feature map of the encoder,
which can be used to predict the current character at the current time step. Let
us define αt as the attention mask vector at time step t, hi as the hidden state of
the encoder at the current time step i ∈ {0, 1, . . . , N -1}, st as the hidden state
of decoder at current time step t ∈ {0, 1, . . . , T -1}, where T is the maximum
length of decoding characters. Then,

αt = Softmax(et) (1)

where
et,i = f(hi, st−1) = wT tanh(Whi + V st−1 + b) (2)

where w, W , V and b are trainable parameters. After obtaining the attention
mask vector, the most relevant context vector can be calculated as:

ct = g(αt, H) =

N-1∑
i=0

αtihi (3)

Location-based Attention The main disadvantage of content-based attention
is that it expects positional information to be encoded in the extracted features.
Hence, the encoder is forced to add this information, otherwise, content-based
attention will never detect the difference between multiple feature representa-
tions of same character in different positions. To overcome it, we use an atten-
tion mechanism that takes into account the location information explicitly, i.e.
location-based attention [8]. Thus, the content-based has been extended to be
location-aware by making it take into account the alignment produced at the
previous step. First we extract k vectors lt,i ∈ Rk for every position i of the
previous alignment αt−1 by convolving it with a matrix F ∈ Rk×r:

lt = F ∗ αt−1 (4)

And then, we replace Equation 2 by:

et,i = f ′(hi, st−1, lt) = wT tanh(Whi + V st−1 + Ult,i + b) (5)

where w, W , V , U and b are trainable parameters.
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Attention Smoothing In practice, the attended area is a little narrower than
the target character area of the word image. Consequently, we can infer that
the model can already get the correct prediction only focusing at the narrow
area. However, from the viewpoint of humans, a little wider covering area of the
target character would be beneficial. For this reason, we propose to replace the
Softmax Equation 1 with the logistic sigmoid σ proposed by [8]:

αt,i =
σ(et,i)∑N
i=0 σ(et,i)

(6)

3.3 Decoder

The decoder is a one-directional multi-layered GRUs. During each time step t,
the concatenation of the embedding vector of the previous time step ỹt−1 and
the context vector ct will be fed into the current GRU unit. The embedding
vector for each character in the dataset’s vocabulary comes from a look-up table
matrix, which is randomly initialized and updated during the training process.
The prediction of each time step t is:

yt = arg max(ω(st)) (7)

where ω(·) is a linear layer. Then we use the index to fetch the corresponding
embedding vector ỹt from the look-up table matrix:

ỹt = Embedding(yt) (8)

The decoder always starts with the start signal 〈GO〉 as first input character
and ends the decoding process when the end signal 〈EOS〉 occurs or until the
maximum time step T.

The previous embedding vector and current context vector are concatenated
to obtain st, the hidden state of decoder at current time step. Thus, at each
time step of the decoding, the decoder GRU can take advantage of both the
information of the previous character and the potentially most relevant visual
features, which will benefit the model to make correct predictions. So,

st = Decoder([ỹt−1, ct], st−1) (9)

where [·, ·] is the concatenation of two vectors. There are two techniques that
we can adopt to improve the decoding process: multi-nomial decoding and label
smoothing.

Multi-nomial Decoding Inspired by [7], during the training process, instead
of choosing the character that has the highest probability from the Softmax
output dt at time step t, multiple indices can be sampled from the multi-nomial
probability distribution located in the Softmax output dt. But to keep the model
simple, here we sample only one index but in a random way based on the multi-
nomial probability distribution, and this index corresponds to a specific charac-
ter. Although only one index has been sampled, it allows the decoder to explore
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other alternative decoding paths towards the final word prediction, which could
make the decoder more robust and lead to better performance, although it will
absolutely take longer epochs to train.

Label Smoothing Label smoothing [26] is a regularization mechanism to pre-
vent the model from making over-confident predictions. It encourages the model
to have higher entropy at its prediction, and therefore it makes the model more
adaptable and improve generalization. We regularize the groundtruth by replac-

ing the hard 0 and 1 classification targets with targets of
ε

k
and 1− k − 1

k
ε. In

this paper, we choose the ε = 0.4.

4 Experiments

In this section, we report the experiments performed to evaluate our attention-
based seq2seq model and discuss the techniques that could be potentially helpful
for HTR tasks. We finally make a comparison among the state-of-the-art works.

4.1 Dataset

As the IAM Handwriting dataset [17] is the most popular one for handwritten
text recognition tasks, we carried out our experiments based on it. The IAM
dataset consists of 115320 isolated and labeled words written by 657 writers. For
the partition, we chose the most widely used one: the RWTH Aachen partition,
which consists of 55081, 8895 and 25920 words in training, validation and test
sets, respectively. All of these sets are disjoint, and no writer has contributed to
more than one set. We selected all the words whose segmentation are marked
“OK” (even when there are some errors among the “OK” words, we still keep
them), so we obtain 47981, 7554 and 20305 words in each partition. Examples
of the training and test images are shown in Figure 2.

a) Samples from the training set

b) Samples from the testing set

Fig. 2: Samples from the IAM dataset of the word “Don’t”.
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4.2 Implementation Details

All experiments were run using the PyTorch system [19] on an NVIDIA GTX
1080 Ti. Training was done using Adam optimizer with an initial learning rate of
2 · 10−4 and a batch size of 32. We set the dropout probability to be 50% for all
the GRU layers except the last layer of both encoder and decoder. We have run
some experiments based on different number of layers and size of hidden state,
and the final decision of these hyper-parameters will be discussed in section 4.3.

All the images have been resized to a fixed height of 64 pixels while keeping
the original ratio of the length/height. With the fixed height size of 64 pixels,
the longest word has the length of 1011 pixels, so we padded zeros to the right
of every word image so as to share the same shape of 64× 1011.

4.3 Results

All results presented use the standard performance measures: character error rate
(CER) and word error rate (WER) [10]. The CER is computed as the Levenshtein
distance which is the sum of the character substitutions (S), insertions (I) and
deletions (D) that are needed to transform one string into the other, divided by
the total number of characters in the groundtruth word (N). Formally,

CER =
S + I +D

N
(10)

Similarly, the WER is computed as the sum of the word substitutions (Sw),
insertions (Iw) and deletions (Dw) that are required to transform one string
into the other, divided by the total number of words in the groundtruth (Nw).
Formally,

WER =
Sw + Iw +Dw

Nw
(11)

Since our experiments are at word level, WER becomes the percentage of incor-
rectly recognized words.

Table 1: Validation CER comparison changing the size of the hidden state and
number of layers.

Size
Number of Layers

1 2 3

128 5.57 6.07 6.09
256 5.13 5.33 5.69
512 5.05 5.01 5.34
1024 5.19 5.03 5.10

At first, we need to find out relatively perfect parameters for sizes of hidden
state and hidden layers of both encoder and decoder. As the hidden state of
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the decoder should be initialized by the encoder, we always keep the size of the
hidden state and the number of hidden layers the same for both the encoder and
decoder. We tried 1, 2 and 3 layers, 128, 256, 512 and 1024 sizes, being a total
of 12 experiments. From the results shown in Table 1, we can observe that the
relatively best parameters are 2 layers and 512 size for both the encoder and
decoder.

Table 2: Ablation study for the proposed model tested on the IAM dataset,
character error rates are computed from validation set.

Attention AttnSmooth Multinomial LabelSmooth Valid-CER Valid-WER

Content
− − − 5.79 15.91
− − X 5.08 13.88

Location

− − − 5.49 14.74
− − X 5.01 13.61
− X − 5.53 14.53
− X X 5.03 13.66
X − − 5.72 15.92
X − X 5.34 14.62
X X − 5.84 15.85
X X X 5.56 14.85

As detailed in Section 3, we explored some techniques for potential improve-
ments. Table 2, shows that the best performance was achieved using location-
based attention and label smoothing. Studying the table, we can see that the
label smoothing is really helpful. The location-based attention is just slightly
better than the content-based one. The reason behind this little improvement is
that the use of the BGRU in the encoder can already encode some positional
information to the feature map. Contrary, once we encode the positional infor-
mation explicitly, the result improves. In conclusion, the location-based attention
still meets our expectation.

Concerning attention smoothing and multi-nomial decoding, they seem not
helping our model. On the one hand, the original Softmax attention is already
good (attention visualization can be found in Figure 3 and 4), therefore smooth-
ing the attention may introduce noise, which could harm the model. On the
other hand, multi-nomial decoding enables the proposed approach to explore
new decoding paths. This exploration was expected to make our model more
robust, however, it has showed that this technique is still not able to outperform
our best result in the table. This probably means that the multi-nomial decoding
really makes our model harder to train.

Table 3 shows the most popular approaches on the IAM word-level dataset,
however, most of them have applied different pre-processings on the original
dataset. For HMM-based approaches, Gimenez et al. [11] corrected the slant in
the image and made the gray level normalization. Bluche et al. [6] also corrected
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Table 3: Comparison with the state-of-the-art methods.

Idea Method Lexicona LM Pre-processing Pre-train CER WER

HMMs
Gimenez et al. [11] tr+va+te X X − − 25.80
Bluche et al. [6] te X X − − 23.70
Bianne et al. [4] tr+va+te − − − − 21.90

CTC
+

RNN
Mor et al. [18] − − − − − 20.49
Pham et al. [20] − − − − 13.92 31.48
Krishnan et al. [15] − X − Synthetic 6.34 16.19
Wiginton et al. [27] − − X − 6.07 19.07
Stunner et al. [23] 2.4M X − − 4.77 13.30

Search
Neighbor
Nearest Almazan et al. [1] te − − − 11.27 20.01

Krishnan et al. [14] te+90K − − Synthetic 6.33 14.07
Poznanski et al. [21] tr+te X X Synthetic 3.44 6.45

Attention
Bluche et al. [5] − − − CTC 12.60 −
Sueiras et al. [24] − − X − 8.80 23.80
Ours − − − − 6.88 17.45

a Vocabulary of all words occurring in training (tr), validation (va) and test set (te).
2.4 million (2.4M) and 90 thousand (90K) words lexicon.

the slant in the image, enhanced the image contrast and added 20 white pixels
on left and right to model the empty context. Bianne et al. [4] trained the
model using all training and validation sets. These approaches have already
been outperformed, since the RNN- and nearest neighbor- based approaches
perform pretty well. In the case of RNN-based approaches, Mor et al. [18] filtered
out punctuation and short words, and trained the model using training and
validation sets. Krishnan et al. [15] has been pre-trained using synthetic data.
Wiginton et al. [27] cleaned the punctuation and upper-cases, used the profile
normalization and applied test augmentation.

Since the nearest neighbor-based approaches cannot work without lexicons,
they cannot be widely used in daily or industrial use cases. In addition, Krish-
nan et al. [14] has also pre-trained using synthetic data, cleaned punctuation
and upper-cases and applied test augmentation. Poznanski et al. [21] used a
pre-trained model from synthetic data and applied test augmentation.

The bottom rows of Table 3 correspond to attention-based approaches, which
are relatively new for handwriting recognition and have a significant potential
for development. But Bluche et al. [5] has been pre-trained using CTC loss in
order to get meaningful feature representation. Sueiras et al. [24] corrected the
line skew and the slant in the images, normalized the height of the characters
based on baseline and corpus line.

Among all those approaches, some of them have utilized language model (LM)
explicitly. Even though no language model is used in our system, the RNN of the
decoder might learn the relations between characters in the training vocabulary.
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Fig. 3: Examples where the attention mechanisms correctly focuses on the
right characters and we obtain a good transcription (Left: Prediction, Right:
Groundtruth).

Fig. 4: Examples where we obtain an incorrect transcription (Left: Prediction,
Right: Groundtruth).

In summary, we can observe that our results are the best among the attention-
based approaches and comparable to other state-of-the-art approaches especially
with neither dataset pre-processing, model pre-training on synthetic dataset nor
using CTC loss.

4.4 Error Analysis

Some attention examples are visualized in Figure 3 and 4. In Figure 3, the
predictions are correct and the attentions are perfectly aligned to each character
as we expected. However, in Figure 4, the errors in the first two images are due
to the slant of the words and very different writing styles in comparison to the
training set. Concerning the third image, if we only look at the isolated word
image, actually it is hard to tell the transcription even as a human. According to
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this error, a language model could be used to improve the prediction. The error
in the fourth image is due to the mismatch of the image and groundtruth label,
while they are all upper-cases in the image but in the label all the characters are
lower-cases. This last error is inevitable due to the dataset grountruth, hence,
we prefer to reduce the other errors. Some approaches deployed a deslanting
method or other pre-processing steps to deal with it, but there are limitations to
these techniques. A video showing the evolution of such attention maps across
different training epochs is provided as supplementary material.

5 Conclusion and Future Work

In this paper, we have presented Convolve, Attend and Spell, an attention-
based seq2seq model for handwritten word recognition without using any of
the traditional components of a HTR system, such as CTC, language model
nor lexicon. It is an end-to-end system consisting of an encoder, decoder and
attention mechanism. We explored various structures and strategies to improve
the model, and we finally outperformed most of the state of the art methods
with a 6.88% character error rate and 17.45% word error rate on IAM word-level
dataset. Our future work will be focused on the application of this model to the
recognition of text-lines on the IAM dataset, and to explore the incorporation
of language models into the seq2seq models.
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